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Abstract. The interaction of current carriers with localized moments in a two-dimensional 
Heisenberg antiferromagnet is considered in the 5-d exchange model (both using per- 
turbation theory and in the limit of infinitely large 5-d parameter) and in the I-J model. It is 
demonstratedthatatlow T Jthe.electronspenrum hasthe samestructureasin theground 
state despite the absence of long-range magnetic order. The influence of spin dynamim on 
the manifestations of the Kondo effect is investigated, and the corresponding T-linear term 
in resistivity is obtained. The problem of the formation of a narrow quasi-particle peak near 
the band bottom due to spin dynamics is discussed. Using the Schwinger boson or Dyson- 
Maleev representation yields, unlike the linear magnon theory, an appreciable bare band- 
width of a hole in the I-/ model, which is proportional to the sublattice magnetization 
quantum contraction. 

1. Introduction 

The idea about the decisive role of strong inter-electron correlations and, in particular, 
of local magnetic moments in the problem of high-T, superconductivity, put forward by 
Anderson [l], has stimulated great interest in the problem of electron-spin interactions 
in two-dimensional (2D) systems (see [24]). In these papers, the t-J model (the U = 30 
Hubbard model with inclusion of the direct Heisenberg interaction J) at temperature 
T = 0 was employed. The standard description of a ZD Heisenberg antiferromagnet at 
finite Tis quite different from that at T = 0 because of destruction of the long-range 
magnetic order. One might suppose that the structure of the electron spectrum at T 4 J 
is weakly disturbed by thermal fluctuations since the correlation length j i s  exponentially 
large [5,6] and the short-range order is very strong. However, formal treatment of the 
finite-Tcase is not trivial. Recent works on u3 Heisenberg magnets using the Schwinger- 
boson technique [7-91 or the Dyson-Maleev representation [lo] give the possibility to 
resolve this problem. This is one of the issues of the present paper. Besides the s-d 
exchange model with the s-d parameter 1- k 30 (which includes the t-J model as a 
particular case) we consider the broad-band s-d model using perturbation theory in I .  
(In this connection, it should be noted that both the narrow-band and the broad-band 
limit may be realized for different electron groups in copper oxide layers.) 

The structure of the paper is as follows. In section 2 we describe the Schwinger- 
boson formalism and discuss the second-order correction to the electron self-energy (in 
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particular, theantiferromagneticgap). Insection3 weconsiderthecorresponding many. 
electron corrections to the density of states. Besides that, we calculate the third-order 
Kondo contributions, which turn out to be more important. In section 4 we treat the 
problem of the formation of a quasi-particle band near the band bottom due to spin 
dynamics in the broad band s-d model. In section 5 we consider the same problem in 
the narrow-band s-d model and f-J model. In appendix 1 we carry out a comparison 
with approaches using the Dyson-Maleev and Holstein-Primakoff representations, and 
in appendix 2 we analyse the structure of the perturbation series in the s-d model. 

V Yu Irkhin and M I Katsnelson 

2. The Schwinger-boson representation and the second-order correction to the electron 
self-energy 

We proceed with the Hamiltonian of the s-d exchange model 

H = ekciock,, - I Sic$u,.cio. + Hd (1) 
ko id 

where ci0 are the conduction electron annihilation operators, Si are the localized spin 
operators, U are the Pauli matrices, I is the s-d exchange parameter, 

Hd = JC SiSi = 4 J,S- ,S,  (2 )  
(41 V 

is the Heisenberg Hamiltonian. When describing the antiferromagnetic state within 
approaches [7-IO], no anomalous averages (Se) (sublattice magnetization) occur, and 
the long-range magnetic order is manifested by the delta-like singularity of the pair 
correlation function (S,S-,! at q = Q (Q = (z, z) for a square lattice). Such a picture of 
the ground state of an antlfemomagnet was discussed earlier in detail in [ll]. For ZD 
systems this description turns out to be suitable since it yields a 'smooth' transition to 
the case of finite temperatures. 

Consider the Schwinger representation of spin operators 

Si = +x b$o,.bi,. (3) 
00' 

bcbi, = 2s (4) 
0 

where bi, are Bose operators, and S is the value of the localized spins. In the mean-field 
approximation the constraint (4) is taken into account by introducing the Lagrange 
multiplier A, which is independent of site index i ,  and the anomalous averages describing 
the singlet pairing are constructed from (bitbii). The onset of long-range ordering 
corresponds to the Bose-Einstein condensation for quasi-momenta k = +Q/2 .  To treat 
this formally one may include the interaction with an external magnetic field h [SI. Using 
the Bogoliubov transformation 

bep+kt = Cosh e k f f k  - sinh e k f l ? k  
(5) bpb-kl = cosh 

we diagonalize the Hamiltonian (2) to obtain 

- sinh ekCu: 
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H~ = 2 ( E ~ L Y :  + E ~ B : B ~ )  + const (6)  

E k , , p = E k + ( 4 h - 2 J ( S Z ) )  E k = ( d z -  Yk) “‘ (7) 
sinh 2gk = y k / E k  cosh 28 ,  = A/Ek (8) 
yx = dy(sin k, + sin ky). (9) 

k 

where, for the square lattice, 

Equations for yand d, which are obtained from (4), (5) and (S), read 

I d  
N k Ex 

2s + 1 = - 2 - (1 + Nko + Nkp) 

where N,e,p = N(E,,p) are the Bose distribution functionsand Nis the numberof lattice 
sites. 

ConsiderthecasewhereT= 0.ThenA = yand,forh > O,N,,(butnotNw)contains 
a condensate term at Ekm = 0, i.e. 

k =  * Q / 2  Eh = *h - 2J(S2) h. (12) 

NtQb = N(S‘) = NEQ&A (13) 

Then we have 

with 2nB being the density of condensed bosons. Equation (10) yields 

(14) 
1 

nB = S + 1 - --E [l - $(sink, + sin k y ) Z ] - 1 / 2  = S - 0.197 
2N k 

so that nB equals the sublattice magnetization of the NCel antiferromagnet with account 
of the zero-point spin-wave correction. 

At finite T,  the spectrum contains a gap and the condensate is absent. Then we may 
put h = 0, Nkc,s = Nk from the beginning. 

We calculate the one-electron retarded anticommutator Green function 

GZ(E) = ( ( c b k ~ o ) ) ~  [ E  - - & ( E ) ] - ’ .  (15) 

To second order in I we obtain for the self-energy (cf [12])  

wheref, = f ( ~ ~ )  is the Fermi function, Kqm is the spectral density for the Hamiltonian 
Hd, 
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ffdlm) = E,lm) w, = exp(-E,/T)/Trexp(-H,/T). (17) 
Using the spectral representation (17) we obtain Kqw from the spin Green functions, 
which are expressed in terms of polarization operators of non-interacting bosons a and 
b. The result reads 

K, =-E E {cosh2(e, + h + q ) N d l  +Nk+, . . )S (w+&+q,v  -Ek,,) 
1 

4N k p.v=lr.p 

+ 6(1+ S p n )  sinh2(% - Bkt,)[Nk,,N,+,. .6(w-El, , , ,  - E d  

+ (1 + NtuW f Ntt,..)S(o + Ektq,, + Exp)lZ (18) 
As follows from (13), at T =  0, h+U, the spectral density contains the delta-like 
contribution 

SK,, = %n;NSqaS(o) .  (19) 
The factor of 3/2 in (19) is an artifact of the Schwinger-boson approach (which yields 
(S;) = #S(S + l) ,  thereby violating the sum rule because of an approximate treatment 
of the constraint (4) in the mean-field approximation); it is absent when using, e.g., the 
Dyson-Maleev representation (see appendix 1). Hereafter we omit this factor when 
considering electron properties. Then we get from (16) and (19) 

6 x k ( E )  = P n ; / ( E  - E,,~). (20) 
After substituting this contribution into (15) we obtain the standard antiferromagnetic 
gap in the electron spectrum. 

Now we treat the case of finite T. At k +  *Q/2 we have [8] 

where 

E 0~ ~ X P [ ( ~ A / ~ T ) ~ B I  (22) 

is the correlation length. At q = Q the integral in (18) is almost divergent at the points 
k = +Q/2 (with the cut-off Ik i Q/21- E-' ) .  Expanding N I  = T/E, we write down the 
corresponding singular contribution in the form 

SK,, = $[(2T/d) In f]'AqAm = $n;h,A, (23) 
where Aq and A, are S(q - Q) and S(w)  l i e  functions smeared on the scales E-' and 
wt - A / g  - J / g ,  respectively. The quantity o5 coincides with the characteristic scaling 
frequency in [6]. 

J one has wE 4 T and we may neglect the smearing, so that the description 
of the antiferromagnetic gap by (20) holds despite the absence of long-range order. The 
temperature dependence of the gap may be obtained if one retains the terms of the next 
order in In 5. Using for E the result of [SI yields corrections to nB that are proportional 
to Tln T. However, the more accurate consideration [6] shows that the pre-exponential 
factor in (22) does not depend on T. Then we have in (20) nB + S,,(T) with 

At T 

S&) = nB( l  - const. T/J) .  (24) 
To obtain an analogue of the term describing the interaction of an electron with 
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antiferromagnetic spin waves we have to consider the expression (18) at Iq - Ql% E-’ .  
Picking out the contributions ‘linear’in nB, i.e. putting E,+ 0, Nk = TIE,, butretaining 
Nk+, and vice versa, we derive 

x U 1  + N(wq)16(w + m q ) + N ( w q ) N w  - os)) (2.9 

0 1  = - q q )  ‘19 E,+Q/z qr  COS 4. + COS qv)  (26) 

where, for q ,  Iq - Ql B e-’, 

so that wq coincides with the magnon frequency of the square-lattice antiferromagnet 
with I being the renormalized spin-wave bandwidth. 

Substituting (20) and (25) into (16) gives” 

This expression has the same structure as that for the usual conducting antiferromagnet 
(cf [13, 141). Both the dependence Sef(T) and the contributions due to the Bose dis- 
tribution functions result in corrections to the electron spectrum of order P(T/J). 

3. Many-electron contributions to the electron self-energy and the Kondo anomalies 

The Fermi distribution functions in (27) lead to a sharp energy dependence of the 
electron density of states 

in the region ]El =s JS near the Fermi level (E = 0). The corresponding ‘non-quasi- 
particle’contribution [15,16] has the form 

&(E) =12nB 2 1q1 [ f ( E - A @ ? )  +f(-E- b 4 / d Z ) ] a r ? n ~ ( E / b ) * .  (30) 
q 

Such a dependence may be observed in transport properties and tunnelling experiments. 
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It should be noted that an analogous contribution tog(&) occurs in second order in the 
interaction with acoustic phonons. 

Consider now the terms of third order in I which describe the Kondo effect and lead 
to a stronger dependence of Z(E). They were discussed in [ 121 for a 3D antiferromagnet. 
To treat the 2~ case we may use the general expression for the Kondo contribution to 
the self-energy in theperiodics-d model, validfor arbitrary spindynamics (seeequation 
(14) in [12]). This may be rewritten in the suitable form. 

V Yu Irkhin and M I Kafsnelron 

- exp[i(Ekte-, - ~~+,)tllexp[i@ - ~ k + ~ ) t ’ l  

( [ s E q ( t ) ,  s$-p]s i ( f ) )d  (31) 

where is the unit antisymmetric tensor, P ( t )  and (. . .)d stand for the Heisenberg 
representation and the average with the Hamiltonian Hd. The dependence Si@’) may 
be neglected since it is not important for cutting off the logarithmic divergence. Using 
the rotationalsymmetry, the Schwinger-bosonrepresentation (3) and (5)-(7), we derive 

([SE&). S{-,]S,’h = - (i/2)~,p~([Sf~(O, s&#;)d 

exp[-i(Ek+, + E&] --(-- 1 1  1) (-+ 1 
1) 2 Ex E*+, 

X exP[i(Ek+, f ( (bi+q, t b ~ + , - ~ ,  1 - bl+t,, I bk. 1 )%)d. (32) 

Neglecting contributions of the order of the magnon frequency, the expression in the 
large square brackets may be replaced by 

exp[i(Ek+, -E.&] + co~[(Ek+,  + E&]. 
Picking out in (32) the ‘singular’ term proportional to &, we get 

This expression coincides with equation (29) in [12], obtained for the usual Nee1 state. 
Averaging over the angle between the vectors k and k’ and calculating the imaginary 
part of the average, we derive for the self-energy on the Fermi surface ( E ~  = 0) at 
IEl <Us (a - JkF is a characteristic magnon frequency) 

x [ ( E X ’  -EkrtQ)-1 =-2JrI3S2,(T) 

X (rC,h-Sh-’ I E l / f i ) ( E r : ~  -(E~:Q)F) (34) 
where (. . . )F stands for the average in k‘ over the Fermi surface. Thus, owing to spin 
dynamics (wq  E q a t  q > E - ’ ) ,  we have in ZD the linear energy dependence for the 
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damping of electron states with IEl< 6, in contrast with the usual Kondo behaviour 
Im 6Z(E)  a lnlEl (which takes place at (El 9 w). As follows from the analytical proper- 
ties of Z(E), the dependence /El = E sgn E in Im Z(E) corresponds to the contribu- 
tion ElnlEl in ReZ(E). (In three dimensions, we have Im6Z(E) IEIE, 
Re 6Z(E)  0~ E2 In [El [12].) The contribution of order ElnlE/JI in Re Z F ( E )  leads to 
the Tln T dependence of the Fermi surface cross sections. This may be observed in 
investigations of the de Haas-van Alphen effect. 

The contribution to the conductivity O(T) due to the ‘Kondo’ scattering may be 
estimated as (vk = d E , / a k )  

a13n%1 -const ’ T ) ( ( U i / E k + Q ) F  - b : ) d E F : : O ) F ) .  (35) 

This term is linear in Ta t  T J owing to both the dependence S,,(T) and the energy 
dependence of the damping. The sign of 6o(T) depends on the sign of I and on the shape 
of the Fermi surface. 

Similar to the case of one Kondo impurity [17], the ‘Kondo’ terms may be summed 
up in the ‘parquet’ approximation, which is reliable for I > 0 (see also appendix 2). This 
does not change the dependence of non-analytic corrections to Z(E) ,  which clearly 
contradicts the Fermi liquid theory (where the leading non-analytic contribution 
6Z(E) a E3 In E in any dimensions [IS]). For I < 0, one might assume that the local 
moments are compensated and the Fermi-liquid picture is restored below some tem- 
perature T;, which is an analogue of the Kondo temperature (cf the situation in heavy- 
fermion systems). On the other hand, it is possible that the Fermi-liquid theory is 
violated up to T = 0, similar to the situation in a conducting ferromagnet [15,16]. 

4. Formation of the quasi-particle band in the broad-band s-d model 

Now we investigate more accurately the structure of the electron spectrum near the band 
bottom for a single current carrier taking into account spin dynamics. This problem was 
considered for the t-Jmodel in [2-4]. Investigation of the broad-band s-d model, where 
a well defined perturbation expansion exists, before the narrow-band case seems to be 
instructive. 

Performing summation of higher-order terms in the ‘non-crossing’ approximation 
(see appendix 2) we obtain for the self-energy 

For T = 0 we have 
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By analogy with the consideration in [2] we use the ‘dominant pole’ approximation 

Gk(E) = a&/@ - Epf) + Ginc(k, E )  (38) 

where U, is the residue at the pole, 

E: = E,,,~” + ak(Ek - E , , , ~ ~ )  = emin +a(@? 

is the spectrum of new quasi-particles, G,oc is an incoherent contribution to the Green 
function and tis the transfer integral. Near the band bottom (k = 0, E = E,,,~“), @a+n(E) 
does not lead to divergences and the second term in (36) may be neglected (it is principal 
near the band top k = Q, E = E,,,..). Substituting (38) into (36) we obtain in 20 the 
estimation 

Then at 12 9 Jltl we have the ‘heavy-fermion’ situation with 

m*/m = - P / J l t (  * 1. (41) 
In the three-dimensional case we have 

- 1 = (I2S/t2) In It/.!S( (42) 

(similar divergences were treated in [19]). 
The terms with the Bose functions in (25) yield corrections to U-’, which are pro- 

portional to T/(JE), i.e. exponentially small. Therefore the consideration of the quasi- 
particle band formation in the present and next sections holds at finite T 4 J. 

Thus the picture of the electron spectrum in a 2D antiferromagnet near the band 
bottom is as follows. At small 111 IJtllP the spectral density (-l/n) Im G,(E) is con- 
centrated in the delta-like pole contribution, whereas the incoherent part i s  small 
(of order P/(Jt’)). As 111 increases, the spectral weight passes into the incoherent 
contribution, the effective mass of the undamped quasi-particles becoming large. As we 
shall see in the following section, the results (40)-(42) are qualitatively valid even at 
111 -f m if we replace 111 -f Itl/s. 

It is interesting to note that similar results may be obtained in the case of interaction 
of conduction electrons with acoustic phonons. Indeed, the corresponding self-energy 
may be obtained from the second term in (25) if we replace 

12nB[(1 - 9,,)/(1 + V,)]1’2+A2q q + o  
where A = K is a constant of the electron-phonon interaction, K = ( n ~ / M ) l ! ~  being the 
adiabatic parameter. Since the phonon frequency w, = K ~ ,  the estimate for the residue 
reads 

, - I  - 1 - Az/(61fl) - 1. 

Let us carry out a comparison with the case of the usual paramagnet without strong 



Current carriers in a quantum two-dimensionaI antiferromagnet 6447 

antiferromagnetic correlations. In the latter case, the matrix element of the electron- 
spin interaction is a constant (instead of q'I2 at q+ 0), and the spin frequency is 
proportional to q2 and imaginary, 

where D, - JP is the spin diffusion constant. Then the ansatz (38) gives 

which results in a = 0 for both the 2D and the 3D cases because of the divergence of the 
integral at small q. This demonstrates the significance of well defined 'magnons' for the 
existence of undamped electron states. We can search for damped quasi-particles if we 
replace in (39) E; + E ;  - irk. The damping rk in the dominant pole approximation 
may be estimated as 

Then we obtain at k+  0 

Solving the equation for a gives 

ZD 

1 + COIISt(12S/lt(J)'/2 3D, 

(In 2~ we neglect logarithmic corrections.) Thus the residue of the damped quasi- 
particlesmayalsobesmall. However,itisdifficult toseparate themfromthe background 
of the incoherent contribution. 

5. The electron spectrum in the narrow-band 4 and I-J models 

Now we pass to the limit of the strong interaction of conduction electrons with local 
moments. For 111 -f we have to use in the Hamiltonian the many-electron X-operator 
representation [ZO], which yields 

where li M) is the empty state on site i with the localized spin projection M, and lip, or) 
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is thestate with aconductionelectron, the totalspinon the sites t w/2 and itsprojection 
p.  The r-Jmodel, widely used in the theory of high-T,superconductivity, 

(49) 

(li0)istheholestate)isaparticularcaseofthenarrow-bandmodelwithI-t -=.Indeed, 
one can see that the Hamiltonian (49) coincides with (47) for (Y = -, S = 1/2 if we 
replace E ~ +  21,. 

V Yu lrkhin and M I Katsnelson 

H = 2 t k e k X , ”  + Hd 
k 

The equation of motion for the one-particle Green function 

GfJE) = ~k&,,lef))E (50) 
has the form (cf (211) 

s + 1  S 
+ - 2 S + 1  2s+ 1’ 

p -- . p-=-  

Expanding spin operatorsin the eigenstates of the Hamiltonian H,, (cf 1121) and carrying 
out the decoupling in the equation for B (which is possible to first order in the inverse 
nearest-neighbour number l / r )  we get 

Substituting(54) into (51). pickingout the singularcontribution andreplacing the energy 
denominators by the exact Green functions (the latter may be justified, similar to the 
case ofthe broad-bands-dmodel, within perturbation theoryin l/z,see [21]), weobtain 

Consider first the ‘mean-field’ approximation where 2, = P,. Then the spectrum 
contains two quasi-particle bands (cf [13]) 

In the nearest-neighbour approximation where E~ = 4tqk, = - E ~  we have 

At T = 0, I < 0 (and in the t-J model) the bandwidth in the mean-field approximation 
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does not vanish due to zero-point contraction of ng only. This bandwidth is absent when 
using the Holstein-Primakoff representation (see [ 2 , 3 ]  and appendix 2 ) .  Note that in 
the t-J model the band is reduced by the factor of 0.4, which is not numerically small. 
At I > 0 the bandwidth does not vanish even when neglecting zero-point oscillations 
(i.e. in the large-z limit), although it is formally small in I/=. 

It should be mentioned that decomposing of Fermi-type X-operators into ‘holon’ 
and ‘spinon’ (i.e. Schwinger-boson) operators and calculating the holon Green function 
instead of the total Green function (50) do not give the narrowing of the bare band, 
which is unreasonable. 

As well as in the broad-band case, the second term in (56) leads to qualitative changes 
in the structure of the spectrum near the band bottom due to spin dynamics. Using (25) 
we obtain at 7‘- 0 

X Z,&.dE - wq)Gx+q.,(E - W q ) .  

G,a(E) = Zxn(E)[a,/(E - E ; )  + G i n c ( k  E)]  

(59) 
Then we may employ the dominant pole approximation 

(60) 
and repeat the calculations of the previous section with the obvious replacement 
rZ+ ( c / ~ S ) ~ ,  corrections to 2, in (60) not being important. We derive 

which is in agreement with [ 2 ] .  The presence of the finite bandwidth in the mean-field 
approximation does not influence the result (61), concerning the formation of a new 
quasi-particle band. However, it must be rather important for the incoherent part of the 
spectrum. 

6. Conclusions 

In the present paper we have demonstrated that introducing an RvB-type order par- 
ameter gives the possibility to describe the electron spectrum in systems with destroyed 
long-range order and to confirm the physically reasonable statement that the form of 
the spectrum is determined mainly by the short-range order. We have investigated 
electron states in a ZD quantum antiferromagnet with both weak and strong electron- 
spin interaction. It would be interesting to  analyse in a similar way effects of short-range 
order in 3D magnets above the ordering temperature. The problem of destroyed (or 
almost destroyed) charge ordering in systems such as Sm3Se,, Fe30,, etc [22], may also 
be mentioned in this connection. 

We have calculated many-electron corrections to the electron spectrum. Most inter- 
esting are the results concerning the manifestations of the Kondo effect, which turn out 
to depend on the space dimensionality due to spin dynamics. 

An important issue is the formation of the energy scale of order J in the electron 
spectrum. It may arise both due to many-electron Kondo-like divergences near EF 
(see also [12]) and for a single current carrier near the band bottom. Simultaneous 
consideration of these effects, which may lead to a richer and more interesting picture 
of electron spectrum in ZD magnetic quantum systems, is an exciting problem. 
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Appendix 1. Comparison with Dyson-Maleev and Holstein-Primakoff representations 

Consider an antiferromagnet divided into A and B sublattices. Following [lo] we may 
introduce the D yson-Maleev representation 

s, = (2s)”2f$ 

S; = S - a t a ,  I E A  

V Yu Irkhin and M I Katsnelson 

S: = (z)l’z[l -(1/2s)ata,]al 

(Al . l )  
S; = (ZS)’/‘b, S; = (2S)”zbi[l - (1/2S)bkb,] 

S&=-S+bkb,  m E B  

with a,, 6, the ideal-boson operators, and put on each site (27) = 0, i.e. 

(a:a,) = (b:b,) = S. 

Using the Bogoliubov transformation 

a, = cosh 8, CY, - sinh 

bi l  = cosh O k  pi, - sinh O k  CY, 

we can diagonalize the Heisenberg Hamiltonian to obtain 

p?* 

f f d  = 2’ wk( f f :  ak + p i  p k )  + COnSt 
k 

= ( p i  P k )  = N ( w k )  N k  

and 

(A1.2) 

(A1.3) 

(A1.4) 

w ,  = ( A z  - Y q k )  tanh 2Ox = y q , / A  (A1.5) 

where Xi stands for the sum over the reduced Brillouin zone. The equations for A and 
y,whicharesimilarto(lO)and(ll),arederivedin[lO]. At T =  0 , i  = y +  0(1/N),and 
the 1/N correction may describe, as well as inclusion of the external magnetic field (cf 
[7,9]),  the Bose condensate formation. 

(A1.6) 

AS follows from (Al.1) and (A1.2), the transverse spin correlation function   SI,^:) is 
identically zero, and the longitudinal correlation function has the delta-like singularity 
at 4 = Q. Calculating the corresponding spectral density gives 

(1 - y 2 / A 2 ) - ‘ / z  = N n B .  

1 ’  
K ,  =K;, =-E {cosh’(B*-B, , , )N,( l+Nx+,)S(w+w,, , -wk)  

N k  

+ f sinh2((Bk - 8k lq ) [NkNk+,S(w  -U*+* - U J ~ )  

4- (1 + Nk)(1 + Nktg)S(w m i + ,  + wk)]} (A1.7) 

SK,, = Nn;S,S(w).  ( A M )  

Similar to(18),expression(A1.7)maybeusedtocalculate theelectronspectrum.Unlike 
(19), (A1.8) does not contain the factor 3/2 since the Dyson-Maleev representation 
maintains the sum rule (S:) = S(S + 1). On the other hand, it violates the rotational 
symmetry, in contrast with the ‘isotropic’ Schwinger-boson representation. 
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Now we consider the linear Holstein-Primakoff representation, where, instead of 

S: = ( 2 ~ ) " ~ a ~  SL = (2S)'fibL. (A1.9) 
corresponding formulae in (Al. l),  

Of course, it is applicable for T = 0 only. 
For simplicity, we restrict ourselves to the treatment of the t-J model 

(Al.  10) 

(Al.  11) 

1 
EG;'t ( E )  = 4+(S:,) +-E' (((tt-vaq +t,b?,)Y;!,IX!:)), (A1.12) 

N ,  
where we have used the relations 

X:+ = 1 - a + a  I 1  = 1 YLO = yt-y-0 m m  = b+Y-O m " (A1.13) 

Carrying out a decoupling in the equation of motion for the Green function on the right- 
hand side of (A1.12) we obtain 

(E- zz ((f,-,n,+t~b',)(tk-,a: +t,b-,))/E) G& (E) = d +(Si). (A1.14) 

Replacing the factor 1/E by the exact Green function, using the Bogoliubov trans- 
formation (which has the same form (A1.3)) and restoring spin dynamics we derive the 
integral equation 

G f t ( E )  = (4 + (Si)) ( E  - zz' (&-, cosh 8, - tk sinh O,)*G&,, (E-w,)) 

(Al. 15) 
wphich agrees with the corresponding result of [ 2 ] .  Note that the Green function GO is 
proportional to the small factor 1/2 - (Si). This is in contrast with the consideration of 
section 5, where the result does not depend on U. The difference of both pictures of the 
electron spectrum in the antiferromagnetic (AFM) state is rather instructive (compare 
with the treatment of NMR experiments in the state without magnetic sublattices, but 
with long-range AFM order [ll]). 

1 1  

V 

- I  1 
'I 

Appendix 2. Perturbation theory in the broad-hand sd model 

Writing down the sequence of equations of motion in the s-d model with (S,) = 0 we 
obtain the expansion of the Green function for a single current carrier in the form 

K ,  G,(E) = ( E  - E*) - '  + (E - e,)-* - , E - E ~ + ,  
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14  
f 9 2 ((s,-,+,U)(s-,u)(s,a)(s-qU))(E- & k + q ) - '  

wr 

(A2.1) i x ( E  - Et l4 -J - ' (E  - &+-,+,)-I + . . . 

where spin dynamics is omitted for brevity, K,  = (S_,Sq). 

( ( S q - , + , a ) ( S - , a ) ( S , a ) ( S - p ~ ~ )  = 6,KvK, + 6,KqKp + Sq, - ,K,Kq (A2.2) 

which may be justified in the quasi-classical case. The first term on the right-hand side 
of (A2.2) yields the expansion of the Dyson equation (15), the second termcorresponds 
to the expansion of the denominator in (16) and the third 'connected' term is a vertex 
correction. It is common practice to neglect contributions of the latter type (the 'non- 
crossing' approximation). Then we have 

We employ the decoupling 

This procedure may be repeated in higher orders of perturbation theory. Picking out 
the singular contributions to spin correlation functions and restoring spin dynamics we 
derive expression (36). 

Now we analyse the third-order correction to the self-energy. We use the identity 

( (S , - ,u ) (S ,a ) (S - ,a )~  = K ,  - K,-, - Kq.  (A2.4) 

The first term in (A2.4) yields a connected contribution, and other terms give multiple- 
scattering corrections, which may be summed up in all orders of perturbation theory to 
obtain 

(A2.5) 

in the second-order contribution to &(E),  l e f (E)  (Tmatrix) being of the order of the 
bandwidth for large 111. 

It should be noted that in the case of a finite band filling the approximation (A2.5) 
corresponds to the 'parquet' approximation in the Kondo problem (171, where 

Thisapproximation enablesone to remove logarithmic (in the absence of spin dynamics) 
divergences at I > 0 only. 
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